Acta Cryst. (1992). C48, 1670-1671

Structure of Tris(phenylseleno)phosphine

By N. L. Keder, R. K. Shibao and H. Eckert
Department of Chemistry, University of California at Santa Barbara, Goleta, California 93106, USA

(Received 2 August 1991; accepted 17 December 1991)

Abstract

C}_{18} \mathrm{H}_{15} \mathrm{PSe}_{3}, \quad M_{r}=499.17, \quad\) trigonal (hexagonal cell), $\quad R \overline{3}, \quad a=12.8896$ (5), $\quad c=$ 19.1855 (7) $\AA, \quad V=2760.5$ (2) $\AA^{3}, \quad Z=6, \quad D_{x}=$ $1.80 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA \quad$ (graphite monochromator), $\mu=60.16 \mathrm{~cm}^{-1}, F(000)=1440, T$ $=296 \mathrm{~K}, R=0.068$ for 998 observed reflections with $I>3 \sigma(I)$. The structure determination provides the first crystallographic data of the strain-free $\mathrm{P}(\mathrm{SeCR})_{3}$ unit. Distances: P-Se 2.271 (2), Se-C 1.925 (6) A; angles: $\mathrm{Se}-\mathrm{P}-\mathrm{Se} 96.6$ (1), $\mathrm{P}-\mathrm{Se}-\mathrm{C} 97.6$ (2) ${ }^{\circ}$. The individual molecules have crystallographically imposed threefold symmetry and pack in layers, possibly giving the structure applications in intercalation chemistry.

Experimental. The air-sensitive product was synthesized at 295 K under an Ar atmosphere from the

Fig. 1. ORTEPII (Johnson, 1976) drawing (50% probability ellipsoids) of $\mathrm{P}\left(\mathrm{SeC}_{6} \mathrm{H}_{5}\right)_{3}$.

Fig. 2. Packing diagram (a axis towards viewer, c axis horizontal).

Table 1. Atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{4}\right)$ with e.s.d.'s in parentheses

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{P}(1)$	0.0000	0.0000	0.3975 (1)	387 (7)
$\mathrm{Se}(1)$	0.11911 (6)	-0.05200 (6)	0.33751 (4)	480 (8)
C(1)	0.2620 (5)	0.0373 (6)	0.3924 (3)	377 (52)
C(2)	0.2777 (6)	-0.0149 (6)	0.4524 (4)	514 (63)
C(3)	0.3826 (7)	0.0472 (7)	0.4905 (4)	573 (72)
C(4)	0.4717 (6)	0.1578 (7)	0.4687 (4)	522 (66)
C(5)	0.4560 (7)	0.2102 (6)	0.4096 (4)	494 (61)
C(6)	0.3492 (6)	0.1479 (6)	0.3710 (4)	441 (56)

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses
$\mathrm{Se}(1)^{\prime}$ is related to $\mathrm{Se}(1)$ by the threefold axis along $0,0, z$.

$\mathrm{P}(1)-\mathrm{Se}(1)$	$2.271(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.387(10)$
$\mathrm{Se}(1)-\mathrm{C}(1)$	$1.925(6)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.374(11)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.365(9)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.386(11)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.398(10)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.409(10)$
$\mathrm{Se}(1)-\mathrm{P}(1)-\mathrm{Se}(1)^{\prime}$	$96.6(1)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.4(6)$
$\mathrm{P}(1)-\mathrm{Se}(1)-\mathrm{C}(1)$	$97.6(2)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.4(7)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Se}(1)$	$119.2(5)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.3(7)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Se}(1)$	$120.1(5)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$119.4(6)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$120.6(6)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.8(6)$

reaction of $2 \mathrm{M} \quad \mathrm{PCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Aldrich) with $\mathrm{NaSeC}_{6} \mathrm{H}_{5}$ (Liotta, Markiewicz \& Santiesteban, 1977) in THF. The mixture was filtered and clear yellow crystals (hexagonal plates) were obtained by slow solvent evaporation. A $0.61 \times 0.52 \times 0.30 \mathrm{~mm}$ capillary-mounted crystal was selected for data collection using a Huber (Crystal-Logic automated) four-circle diffractometer with $\theta / 2 \theta$ scan mode to a maximum 2θ of 50° and 2θ scan speed of $3^{\circ} \mathrm{min}^{-1}$. Lattice parameters were determined from 41 reflections in the range $5.6<2 \theta<22.2^{\circ}$. Empirical absorption correction; maximum/minimum transmission factors were 1.00/0.288 (North, Phillips \& Mathews, 1968). Maximum $\sin \theta / \lambda=0.595 \AA^{-1} ; h, k$, l range: $-7-15,-7-15,0-22$. Three standard reflections measured after every 97 reflections showed no significant variation in intensity $\left[\left(I_{\max }-I_{\text {min }}\right) / I_{\mathrm{av}}=\right.$ $0.021]$. 1243 reflections were measured, of which 1091 were unique ($R_{\text {int }}=0.051$) and 93 were unobserved reflections with $I<3 \sigma(I)$. SHELXS86 (Sheldrick, 1985) direct-methods program was used to solve the
structure with \mathbf{P} constrained on the threefold axis. Anisotropic (non-H atoms) full-matrix least-squares refinement; $\quad \sum w\left|\left|F_{o}\right|-\left|F_{c}\right|^{2}\right.$ minimized where $w=$ $1 /\left[\sigma\left(F_{o}\right)\right]^{2}$. The H -atom positions were calculated ($\mathrm{C}-\mathrm{H}$ bond length $1.0 \AA$) and included as fixed contributors with isotropic thermal parameters fixed to $5.0 \AA^{2}$. 67 parameters were refined; $R=0.068, w R$ $=0.083, \quad S=3.23 ; \quad(\Delta / \sigma)_{\max }=0.017 ; \quad \Delta \rho_{\max / \min }=$ $0.84 /-1.00 \mathrm{e} \AA^{-3}$. Scatering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The UCLA Crystallographic Program Package (Strouse, 1985) was used throughout. The program PLOTMD (Luo, Ammon \& Gilliland, 1989) was used to modify the labels of the ORTEP drawing (Johnson, 1976) displayed in Fig. 1. Positional parameters and isotropic temperature factors are listed in Table 1; selected bond lengths and angles are listed in Table 2.* In Fig. 2, the crystal packing is displayed.

[^0]Related literature. The isomorphous structures $\mathrm{P}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}$ (Burford, Royan \& White, 1990) and $\mathrm{As}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}$ (Papalardo, Chakravorty, Irgolic \& Meyers, 1983) have been reported.

Financial support of this research by NSF grant \# DMR 89-13738 is gratefully acknowledged.

References

Burford, N., Royan, B. W. \& White, P. S. (1990). Acta Cryst. C46, 274-276.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liotta, D., Markiewicz, W. \& Santiesteban, H. (1977). Tetrahedron Lett. pp. 4365-4368.
Luo, J., Ammon, H. L. \& Gilliland, G. L. (1989). J. Appl. Cryst. 22, 186.
north, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pappalardo, G. C., Chakravorty, R., Irgolic, K. J. \& Meyers, E. A. (1983). Acta Cryst. C39, 1618-1620.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Strouse, C. (1985). UCLA Crystallographic Program Package. Department of Chemistry and Biochemistry, Univ. of California, Los Angeles, USA.

Acta Cryst. (1992). C48, 1671-1673

Structure of 3,3-Bis(2-imidazolyl)propionic Acid Monohydrate

By B. Gimeno, L. Soto and A. Sancho
Department de Química Inorgánica, Facultat de Farmacia, Universitat de Valencia, Avda. Blasco Ibañez, 13, 46010 Valencia, Spain

and F. Dahan* and J.-P. Legros
Laboratoire de Chimie de Coordination du CNRS, Unité n° 8241, liée par convention à l'Université Paul Sabatier et à l'Institut National Polytechnique, 205 route de Narbonne, 31077 Toulouse CEDEX, France
(Received 22 October 1991; accepted 20 December 1991)

Abstract

C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=224.2\), triclinic, $P \overline{1}$, $a=7.322$ (1), $\quad b=10.029$ (1), $\quad c=7.155$ (1) $\AA, \quad \alpha=$ $89.96(1), \quad \beta=99.72(1), \quad \gamma=95.14(1)^{\circ}, \quad V=$ 515.8 (4) $\AA^{3}, Z=2, D_{x}=1.44 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)=$ $0.71073 \AA, \mu=0.1 \mathrm{~mm}^{-1}, F(000)=236, T=295 \mathrm{~K}$, final $R=0.039$ for 1081 reflections. The molecule, abbreviated as HBIP, is a zwitterion containing $-\mathrm{COO}^{-}$and -(imidazole) H^{+}residues. The

^[* To whom all correspondence should be addressed.]

0108-2701/92/091671-03\$06.00
dihedral angle between the two imidazole rings is $66.7(1)^{\circ}$. There is no intramolecular hydrogen bond.

Experimental. Synthesis according to Joseph, Leigh \& Swain (1977), colourless data-collection crystal of dimensions $0.35 \times 0.20 \times 0.08 \mathrm{~mm}$. D_{m} not measured. Enraf-Nonius CAD-4 diffractometer; graphitemonochromated Mo $K \alpha$; cell dimensions from setting angles of 25 reflections having $10.6<\theta<13.1^{\circ}$; 1813 reflections measured using $\omega-2 \theta$ scan with 2θ
(C) 1992 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54971 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England. [CIF reference: HH0566]

